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Bending of a micron-size single-crystalline beam is analyzed using both
discrete-dislocation plasticity and crystal-plasticity formulations. Within the
discrete-dislocation plasticity formulation, dislocations are treated as infinitely long
straight-line defects residing within a linear elastic continuum. Evolution of the dislocation
structure during bending is simulated by allowing the dislocations to glide in response to
long-range interactions between different dislocations, and between dislocations and the
applied stresses, and by incorporating various short-range reactions which can result in
dislocation nucleation, annihilation or pinning. At each stage of bending, the stress and
deformation fields are obtained by superposing the dislocation fields and the
complementary fields obtained as a solution of the corresponding linear-elastic boundary
value problem. The results obtained show that there is a continuing accumulation of
“geometrically necessary” dislocations during bending which is expected due to the
gradient in the strain throughout the beam height. In addition, it is found that localization of
plastic flow into slip bands is a salient feature of materials deformation at the
micron-length scale. Within the crystal-plasticity analysis, of beam bending, a small
displacement gradient formulation is used and the material parameters selected in such a
way that plastic flow localizes into deformation bands at low strains. It is found that, while
the global response of the beam predicted by the two approaches can be quite comparable,
fine details of the dislocation-based stress and deformation fields cannot be reproduced by
the continuum crystal-plasticity model. C© 2001 Kluwer Academic Publishers

1. Introduction
The behavior of isotropic linear elastic and isotropic
elastic-plastic beams subjected to pure bending is rel-
atively simple and well established. In linear elastic
beams, the normal stress parallel to the bending axis is
distributed linearly in the through-the-height direction,
with the inner and outer layers of the beam subjected to
the maximum stresses of the opposite sign. Under the
condition of equal yield stress of the material under the
uniaxial tension and compression conditions, the onset
of plastic yielding in an elastic-plastic beam, takes place
simultaneously at the outer and inner surfaces of the
beam. As bending continues, the plastic zone advances
toward the centerline of the beam. For an ideal plas-
tic material, the plastic zone reaches the centerline at
a critical value of the bending moment, which is equal
to 1.5 times its value at the onset of plastic yielding.
Due to inability of the beam to support any additional
bending load, plastic buckling occurs. Similar buckling
does not take place in beams made of strain-hardening
materials. In contrast to the isotropic beams, the be-
havior of anisotropic (e.g. single-crystalline) beams is
more complex. During bending in the elastic region,

the anisotropy of elastic properties substantially affects
stress distribution throughout the beam. In the plastic
region, plastic anisotropy arising from the crystallo-
graphic nature of the material and of deformation slip
on a limited number of slip systems results in an even
more pronounced dependence of the beam behavior on
the orientation of the crystal lattice relative to the bend-
ing axis.

In recent years, a new field of design, analysis,
and processes of micron-size structures and machines
has emerged. Since many components in such micro-
structures and machines are subjected to in-service
bending loads, understanding of the bending behavior
of micron-size beams can provide the data needed in de-
sign of such micro-components. It should be noted that
the micron-size components are generally composed of
single crystalline materials. Hence, as discussed above,
their behavior is intrinsically anisotropic and depen-
dent on the orientation of the material’s crystal struc-
ture. In addition, at the micron-length scale, the effect
of discrete dislocations, in particular their long-range
stress and deformation fields and short-range interac-
tions which can result in dislocation nucleation and
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annihilation and formation of pile-ups and patterns be-
comes important. Recently, Cleveringaet al. [1] carried
out a detailed discrete-dislocation analysis of single-
crystal beam bending which clearly showed the role of
dislocations. In particular, it is found that dislocation
nucleation and motion during bending are not purely
stochastic but rather occur in such a way to produce the
so-called “geometrically necessary” dislocations [2, 3].
The presence of such dislocations reduces the bend-
ing stresses within the beam considerably relative to
the stresses predicted by the elastic continuum models.
While the work of Cleveringaet al. [1] clearly demon-
strated the important role discrete dislocations may play
in affecting the material behavior at the micron-length
scale, it also revealed that discrete-dislocation analy-
sis is extremely computationally expensive. This may
become a major hindrance for its use as a means of gen-
erating the materials property data at the micron-length
scale. Namely, due to a stochastic nature of the discrete-
dislocation approach, numerous simulation runs have
to be made in order to obtain statistically reliable data
needed in the desing of micron-size components.

In the present work, a comparative analysis of bend-
ing of a micron-size beam is carried out using discrete-
dislocation plasticity and crystal-plasticity formula-
tions. The main objective of the work is to establish if
the crystal-plasticity approach, which is computation-
ally quite less demanding, can reproduce the essential
features of the materials deformation at the micron-
length scale.

The organization of the paper is as follows: In Sec-
tions 2.1 and 2.2, the basic formulations of discrete-
dislocation plasticity and crystal-plasticity are pre-
sented, respectively. The results obtained using both
approaches are presented and discussed in Sections 3.1
and 3.2, respectively. Main conclusions resulting from
the present work are summarized in Section 4.

2. Computational analysis
2.1. Discrete-dislocation formulation
Following Cleveringaet al. [1], a discrete dislocation
analysis of bending of a single-crystalline beam is car-
ried out using the formulation proposed by Van der
Giessen and Needleman [4] and Cleveringaet al. [5].
Within this formulation, evolution of the deformation
state and the dislocation structure during loading is
computed in an incremental manner. At the beginning
of a time increment at thet , the position of each disloca-
tion in the body is known and the body is in equilibrium
with the applied tractions and displacements. Then, for
an increment in loading, the formulation of Van der
Giessen and Needleman [4] and Cleveringaet al. [5]
can be used to determine the equilibrium stress fields
and the dislocation structure at the end of the time in-
crement (time= t +1t).

The main concept in the formulation proposed by Van
der Giessen and Needleman [4] and Cleveringaet al. [5]
is that the displacement, strain, and stress fields can be
expressed as the superposition of two fields: (a) the (˜)
fields which are, in turn, the result of superposition of
the (infinite, homogeneous-medium) fields of individ-
ual dislocations in their current configuration. (Since

the stress fields of individual dislocations are singular
and hence not readily handled by numerical techniques
such as the finite element methods, they are evaluated
analytically.): and (b) the (ˆ) complimentary fields asso-
ciated with the imposed boundary conditions corrected
for the effect of dislocations. Since the (ˆ) fields are
generally smooth, they can be determined by solving
a conventional linear-elastic boundary-value problem
using the finite element method.

Due to the intrinsic complexity of a three-
dimensional analysis of the dislocation structure and
its evolution, and the associated computational require-
ments, only a two-dimensional formulation is used.
Within this formulation, dislocations are treated as in-
finitely long, straight, parallel and all of the edge charac-
ter. They are allowed to interact with each other through
their long-range stress fields and to affect the imposed
traction and displacement boundary conditions. The in-
finite, homogeneous-medium dislocation stress and de-
formation fields which are used to compute the (˜) fields
are readily available [e.g. 6, 7]. Only dislocation glide
on well-defined slip planes is allowed and, hence, the
change in the potential energy of the body due to a
potential infinitesimal change in the position of the dis-
locationi results in the Peach-Koehler forcef i given
by:

f i = ni ·
(
σ̂ +

∑
j 6=i

σ̃ j

)
· bi (1)

whereni is the corresponding slip plane normal,bi

the Burgers vector, and ˆσ and σ̃ i are the two stress
fields discussed above. As indicated by Equation 1, the
Peach-Koehler force includes the interactions of a given
dislocation with the applied stress field and with all
other dislocations in the material. The force is coplanar
with the slip plane of the given dislocation and collinear
with its Burgers vector. As a result of the Peach-Koehler
force, each dislocation glides on its slip plane in the
direction of the Peach-Koehler force. The magnitude of
the glide velocityvi of dislocationi is taken to be drag
controlled, and hence, linearly related to the Peach-
Koehler force as:

f i = Bvi (2)

where B is the drag coefficient.B= 10−4 Pa·s is as-
sumed in the present work which according to Kubin
et al. [8] is a representative value for aluminum. When
dislocation pile-ups are formed, the position of disloca-
tions in them is quite unstable, leading to high-velocity
oscillatory motions. To remove these essentially incon-
sequential effects, a cut-off velocity of 20 m/s is used.
This value of the cut-off velocity is found to be low
enough to eliminate the undesirable oscillations and
yet high enough not to affect the results significantly.

In addition to the long-range dislocation interactions
discussed above which contribute to the Peach-Koehler
force and also affect the imposed boundary conditions,
short-range dislocation-dislocation interactions which
may result in nucleation and annihilation of dislocations
are also considered. Dislocation nucleation is modeled
by simulating the operation of Frank-Read sources.
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Within the present two-dimensional formulation, point-
type Frank-Read sources are considered which generate
a dislocation dipole when the magnitude of the Peach-
Koehler force at the source exceeds a critical valueτnucb
(b is the magnitude of the Burgers vector which is set
equal to 0.25 nm) during a time periodtnuc. The dipole
separating distanceLnuc is taken to be dependent on the
source strengthτnuc as:

Lnuc= E

4π (1− ν2)

b

τnuc
(3)

whereE andν are the Young’s modulus set to 70 GPa
and the Poisson’s ratio set to 0.33, respectively. At
the distanceLnuc, the slip-plane resolved shear stress
acting on one dislocation in the dipole due to its in-
teraction with the other dislocation in the dipole is
exactly balanced by the overall slip-plane resolved
shear stress acting on the corresponding source. The
strength of the dislocation sources,τnuc, is randomly
chosen from a Gaussian distribution with mean strength
τ̄nuc= 50 MPa and standard deviation of 0.2¯τnuc. Based
on Equation (3), the mean nucleation distance is
Lnuc= 125.0b= 31.5 nm. The nucleation time which
mimics the time necessary for a stable dislocation loop
to be generated at a Frank-Read source is set to a
fixed value oftnuc= 0.01µs for all sources. Following,
Cleveringaet al. [1], a fixed time increment of1t = 5×
10−10 s is used in simulations. Consequently, timing of
the individual events of dipole generation or annihila-
tion may be slightly incorrect. Fortunately, these effects
are found not to significantly affect the overall results.

Two dislocations with opposite Burgers vector glid-
ing on the same slip plane are allowed to annihilate
when they are with in a material-dependent, critical an-
nihilation distanceLe. Following Cleveringaet al. [1],
a fixed valueLe= 6b= 1.5 nm is used.

Since the material is taken to be of high purity,
fixed, localized obstacles to dislocation motion (e.g.
nano-precipitates, nano-inclusions) are not considered.
Furthermore, short-range interactions between dislo-
cations gliding on intersecting slip planes which can
result in formation of various sessile dislocation con-
figurations or locks of different strengths are not incor-
porated explicitly. Never the less, as will be shown later,
when such dislocations are close to intersecting, their
interactions through the stress fields can be so strong
that they can render them essentially sessile.

The boundary value problem corresponding to plane-
strain bending of a beam is shown schematically in
Fig. 1. The beam has a widthL, and heighth, and
its sides are subject to rotation. A (x1, x2) Cartesian
coordinate system is used with its origin located at the
beam midpoint and its axes parallel with the edges of
the beam, Fig. 1. Thus thex1− x2-plane is the plane
of deformation and the boundary conditions for plane-
strain beam bending can be defined as:

u1 = ±(θx2+U ), σ12= 0 on x1 = ±L/2 (4)

σ12 = 0, σ22 = 0 on x2 = ±h/2 (5)

whereθ is the imposed angle of rotation on the left
and the right sides of the beam. The work-conjugate

Figure 1 A schematic of the discrete-dislocation boundary value prob-
lem for plane-strain beam bending. Positive dislocations on each of the
three slip systems are illustrated to indicate the sign convention used.

bending moment,M , is given by:

M =
∫ h/2

−h/2
x2σ11(±L/2, x2) dx2 (6)

During loading in the elastic regime, the only non-zero
in-plane stress component isσ11 which varies linearly
with x2 between a maximum positive value atx2= h/2
and a maximum negative value atx2=−h/2. Also, the
curvaturek is uniform and equal to 2θ/L, while the
quantityU in Equation (4) is zero. Once dislocations
are generated,U is no longer zero and its value can be
determined from the pure bending condition, i.e. from
the condition that the net force in thex1 direction,F1,
defined as:

F1(x1 = ±L/2)= ±
∫ h/2

−h/2
σ11(±L/2, x2) dx2 = 0

(7)
vanishes. Since each stress component can be decom-
posed into its (ˆ) and (˜) parts, Equation 7 can be rewrit-
ten as:

F1(x1 = ±L/2)= ±
(∫ h/2

−h/2
σ̂11(±L/2, x2) dx2

+
∫ h/2

−h/2
σ̃11(±L/2, x2) dx2

)
(8)

The second term on the right-hand side of Equation 8
is readily evaluated by superposition using the known
positions of dislocations and stress fields for indi-
vidual dislocations within an isotropic, linear-elastic
infinite-medium. The first term on the right-hand side
of Equation 8 is evaluated by first determining the (ˆ)(1)

fields which are consistent with the following boundary
conditions:

σ̂
(1)
11 = −σ̃11, σ̂

(1)
12 = −σ̃12 on x2 = ±h/2; (9)

û(1)
1 = −ũ1± θx2, σ̂

(1)
12 =−σ̃12, on x1=±L/2.

(10)

Clearly, the (ˆ)(1) fields account for the effect of
dislocation-based boundary tractions and displace-
ments on the prescribed rotation. However, this field
does not ensure pure bending i.e. if ˜σ

(1)
11 is substituted

for σ̃11 in Equation 8, a non-zero value ofF1 is gener-
ally obtained. To reduce the magnitude ofF1 to zero, a
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Figure 2 (a) The 90×30 quadrilateral finite-element mesh and (b) the
distribution of two-dimensional Frank-Read type dislocation sources
used in the present work. Variable size of the symbols is used in (b)
to denote the variation in the strength of the sources. The smaller the
source strength, the larger the symbol.

uniform uniaxial stress field:

σ̂
(2)
11 = −

F1(x1 = L/2)

h
(11)

needs to be applied. It can be readily shown that the
quantityU appearing in Equation 4 is related to ˆσ

(2)
11 as:

U = − σ̂
(2)
11 (1− ν)L

2µ
(12)

The displacementU is calculated separately forx1=
L/2 andx1=−L/2. Since both ˆσ (1) andσ̃ i stress fields
are self-equilibrating, the twoU values should be iden-
tical. Numerical evaluation ofU is found to be quite
accurate causing the twoU values to differ only at the
fourth significant digit. It should be noted that the quan-
tity U is not used in the calculation of the complemen-
tary (ˆ) fields but rather these fields are obtained as the
superposition of the (ˆ)(1) and the (ˆ)(2) fields.

A beam having dimensionsL = 1.2µm andh= 4µm
subjected to a bending rate ofθ̇ = 0.5× 103 s−1 is used
in all calculations. The computational domain is dis-
cretized into 90× 30 isoparametric plane-strain quadri-
lateral elements, Fig. 2a. Contour plots for theσ11 stress
(the results not shown for brevity) indicate that the finite
element formulation used can reproduce the bending
stress distribution in the elastic regime with only minor
end effects (<0.2% of σ11). Also, the corresponding
bending moment is found to be within 0.2% of its exact
valueM = Eh3

12(1−ν2) (
2θ
L ).

In all calculations, three slip systems are considered:
two of them are oriented atϕ=±30◦ from thex1-axis
while the third one is parallel to thex2-axis (ϕ=+90◦).
In order to avoid numerical difficulties which may arise
when dislocations try to exit the beam through the sides,
along which the displacements are prescribed, only the
±30◦ slip planes which do not intersect the sides are
considered. The 90◦ slip planes are introduced only over
the central zone of widthL − h/tan 30◦ within which
the±30◦ slip planes intersect. The slip plane spacing is
set to 100 Burgers vectors (25 nm) resulting in a total

of 404 slip planes. The material is taken to be initially
dislocation-free and to contain, 808 dislocation sources
(two per slip plane), Fig. 2(b). The results pertaining to
the bending, moment M which will be presented and
discussed in Section 3 are all normalized relative to a
reference moment,Mref defined as:

Mref = 2

h

∫ h/2

−h/2
τ̄nucx

2
2 dx2 = 2

3
τ̄nuc

(
h

2

)2

(13)

which corresponds to the linear distribution of theσ11
stress:σ11= τ̄nucx2/(h/2), in the through-the-height
direction.

2.2. Crystal-plasticity formulation
In this section, a plane-strain bending analysis of the
beam shown in Fig. 1 is carried out using a continu-
um crystal-plasticity material constitutive formulation.
In order to facilitate a direct comparison with the
discrete-dislocation based results, a small displace-
ment-gradient version of this formulation is used [9].
Within this formulation, the total strain rate ˙ε can be
written as:

ε̇ = ε̇e+ ε̇p (14)

where the elastic strain rate ˙εe is given in terms of the
stress rate ˙σ by the generalized Hooke’s law:

ε̇e = C−1[σ ] (15)

and the plastic strain rate ˙εp is given by:

ε̇p =
∑
α

γ̇ αPα α = 1, 2, 3 (16)

C in Equation (15) is a forth-order isotropic elasticity
tensor defined as:

C = E

1+ ν
[

I ′ + ν

1+ ν I ⊗ I

]
(17)

where I and I ′ are the second- and the forth-order
identity tensors, respectively, and⊗ denotes a tenso-
rial product. ˙γ α in Equation 16 represents the shear
rate on slip systemα characterized by a unit plane nor-
malnα and a unit slip directionmα. Pα in Equation 16
is a second-order symmetric Schmid tensor associated
with the slip systemα and is defined as:

Pα = 1

2
[mα ⊗ nα + nα ⊗mα] (18)

In accordance with the discrete-dislocation formula-
tion presented in the previous section three slip sys-
tems (α= 1, 2, 3) are considered, two inclined at±30◦
with respect to thex′1 axis and the third one normal to
it. Inverting Equation 15 and combining the resulting
equation with Equations 14 and 16 yields:

σ̇ = C

[
ε̇ −

∑
α

γ̇ αPα
]

(19)

Since the discrete-dislocation formulation discussed
in the previous section is rate dependent due to the
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assumed dislocation velocity law, Equation 2, the con-
tinuum material treated in the present section is taken
to be viscoplastic. Furthermore, it is assumed that the
shear rate on either of the three slip systems is given by
the following power-law relation:

γ̇ α = γ̇0

[
τα

sα

]1/m

sign(τα) (20)

where ˙γ0 is a reference shear strain rate,m, the strain-
rate sensitivity parameter,τα, the resolved shear stress
andsα, the slip resistance all associated with slip sys-
tem α. In all calculations ˙γ0= 0.001 andm= 0.005
were used. As will be discussed later, a low value for
m(<0.01) is needed to promote shear band formation
at small strains.

In general, the magnitude of slip resistancesα in-
creases during deformation as a result of self-hardening
and latent-hardening phenomena. Consequently, an
evolution equation forsα has to be defined. In the
present work, however, neither self-hardening nor
latent-hardening effects are explicitly considered and,
hence, an evolution equation forsα is not needed. In-
stead, in order to mimic the distributions of strengths
of the dislocation sources, the places where slip origi-
nates within the discrete-dislocation framework, a cor-
responding distribution of initial slip resistance is used.
This approach should enable for slip to be initiated
and controlled by the elements with the most favor-
able combination of a low slip resistance and a high
resolved shear stress, the same elements which contain
dislocation sources with an optimum combination of a
low source strength and a high Peach-Koehler force. As
will be shown later, this approach promotes localization
of (continuum) plastic flow into narrow bands, which
resemble the slip bands which characterize the plastic
flow within the discrete-dislocation approach. Further-
more, the resistance to the extension of such bands ex-
erted by the surrounding elements with a higher slip
resistance and by other (intersecting) bands implicitly
account for self hardening and latent hardening, respec-
tively.

The resolved shear stress on slip systemα, τα, is
defined as:

τα = σ ·Pα (21)

where the raised dot is used to denote a scalar product.
Substitution of Equations 20 and 21 into Equation 19
yields a stress evolution equation in the form:

σ̇ f (σ ) (22)

Euler forward integration scheme is used to integrate
this equation so that the stress rate at the end of a time
step (time= t +1t), σ̇t+1t is evaluated using the stress
at the beginning of the time increment,σt . This inte-
gration procedure is incorporated into Vectorized User
Material Subroutine (VUMAT) of the commercial fi-
nite element program Abaqus/Explicit [10]. To make
the calculations more efficient, the materials density is
increased by two orders of magnitude. Such density-
scaled procedure did not affect the quasi-static results

Figure 3 Normalized bending momentM/Mref vs. rotation angleθ
relationship predicted by the discrete-dislocation and the crystal-
plasticity analyses.

considerably since the kinetic energy never increased
above 0.1% of the total energy of deformation.

3. Results
3.1. Discrete-dislocation formulations
Fig. 3 shows the variation of the normalized bending
momentM/Mref with the angle of rotationθ . Before the
onset of dislocation nucleation, beam bending is purely
elastic and, thus, a linear relationship exists between
M/Mref andθ . When the normalized bending moment
reaches a value of∼1.21 the first dislocation dipole nu-
cleates and beyond this point theM/Mref vs.θ relation-
ship is no longer linear. NeverthelessM/Mref continues
to increase withθ but at a lesser rate until it reaches a
local maximum value of∼1.33. Subsequently,M/Mref
decreases to a local minimum (∼1.27) and then begins
to increase again at a nearly constant rate. TheM/Mref
vs.θ relationship in the “plastic” regime is not smooth
but rather characterized by high-frequency fluctuations
whose occurrence is the consequence of discrete dis-
location events (e.g. dipole nucleation or annihilation,
dislocations reaching the free surface, etc.). Occasion-
ally, the M/Mref vs. θ curve develops a major spike
(e.g. the one atθ ≈ 0.09), which indicates a significant
rearrangement in the dislocation structure such as the
one which occurs when one dislocation pile-up begins
to penetrate through another one.

In classical plasticity, plastic yielding is assumed to
initiate at the free-surfaces of the beam. The bending
moment at the onset of plastic yieldingMy is then re-
lated to the material’s yield stressσy through My=
2σy(h/2)2/3. Usingthis relationship andMy/M = 1.21,
the yield stress is evaluated asαy≈ 60.5 MPa. However,
it should be noted that within the discrete-dislocation
framework, this value of the yield stress should be con-
sidered unique to bending and to a given distribution of
dislocation sources.

To demonstrate the effect of loading type on the mag-
nitude of yield stress, the same beam used in the bending
analysis, Fig. 1, with the same distribution of sources,
is subjected to plane strain tension, with the loading ap-
plied in thex1-direction. The boundary conditions used
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Figure 4 Plane strain tension results of: (a) Axial stress vs. axial strain
from discrete-dislocation and crystal-plasticity analyses and (b) the
deformed finite element mesh, at the axial strainε= 0.002 obtained
in the discrete-dislocation analysis.

in this case include stress-free surfaces atx2=±h/2
and a uniform distribution of tensilex1 displacements
and the zero shear stress condition along the beam sides
at x1=±L/2. The axial stress vs. axial strain results
obtained, Fig. 4a, indicate that the deviation from the
linear elastic behavior first occurs at the stress level
σ = 55 MPa, which is approximately 10% smaller than
the yield stress value (σy= 60.5 MPa) deduced in the
bending analysis. This difference can be readily ex-
plained. In the case of plane-strain tension, the stress is
uniform throughout the beam, hence, the magnitude of
the yield stress is solely controlled by the dislocation
source associated with the lowest strength. In the case
of bending, on the other hand, the stress field is non-
uniform and hence the yield stress is controlled by both
the source strength and by the magnitude of the slip-
plane resolved shear stress acting on the source. Conse-
quently, initial yielding is not generally associated with
the source of minimum strength. The deformed mesh
corresponding to the axial (plane-strain tension) stran
ε= 0.002 is shown in Fig. 4b. The mesh clearly shows
that plastic flow has localized on one slip plane, which,
as demonstrated by the results shown in Fig. 4a, gives
rise to a plateau in the stress-strain curve. The disloca-
tion structure (the results not shown for brevity) reveals
a very low density of well separated dislocations gliding
on a single slip plane. The dislocation density does not
change substantially during deformation. This disloca-
tion structure is consistent with the fact that due to the
localization of the slip on one plane, forest-dislocation
type obstacles do not form and the dislocations are free
to exit the beam through the free surfaces atx2=±h/2.
In addition, this finding is consistent with the observed
plateau in the stress-strain curve.

The mesh dependence of the normalized moment vs.
rotation angle curve is shown in Fig. 3 where the results

for a coarser 46×16 mesh are presented in addition to
the ones for the 90×30 mesh. The values of the bend-
ing moment at the onset of plastic yielding are quite
comparable in the two cases. However, the peak values
and the local minimum values differ considerably. The
rates of strain hardening in the later stages of plastic
deformation are quite similar in the two cases but the
level of the normalized bending moment is lower in the
case of the coarser mesh by about 0.12. The observed
effect of the mesh size could be the result of one or more
of the following factors: (a) potential differences in the
resolution of the (ˆ) fields; (b) differences in discretiza-
tion of the nodal values of ˜σi j stress components which
are used to construct the loading term for the (ˆ) fields;
(c) differences in the accuracy of numerical integration
of the stress field alongx1=±L/2 beam sides.

The dislocation structure at three values of the rota-
tion angleθ are shown in Fig. 5a–c. Dislocation pile-ups
consisting of positive dislocations on the slip planes in-
clined at+30◦ relative to the positivex1-axis and of
negative dislocations on slip planes inclined at−30◦
relative to the positivex1-axis can be seen at each level
of the rotation angle. Since dislocations are nucleated as
dipoles and only dislocations of one sign are observed
on any given plane, this implies that the missing dislo-
cations have exited the beam through the top or bottom
free surfaces. The remaining dislocations give rise to
plastic bending and can be considered as “geometri-
cally necessary” in order to account for the gradient in
plastic strain along the slip planes. However, not all the
dislocations seen in Fig. 5a–c are geometrically nec-
essary. For example, a few dislocations are observed
on theφ=+90◦ slip planes. These dislocations do not
contribute to plastic bending and hence, are not geo-
metrically necessary. The density of such “statistical”
dislocations is small at low values of the rotation angle
(e.g.θ = 0.005, Fig. 5a). At this stage theM/Mref vs.
θ curve in Fig. 3 is rather flat. The interactions of both
geometrically necessary and statistical dislocations on
intersecting slip systems, Fig. 5b and c, creates barriers
to dislocation motion, which gives rise to the observed
strain hardening, Fig. 3.

The deformed meshes at the same three values of the
rotation angle as in Fig. 5a–c are shown in Fig. 6a–c.
The slip steps which can be seen on the free surfaces
of the beam are caused by the dislocations which have
exited the beam. As discussed earlier, the highly local-
ized deformation pattern, seen in Fig. 6a–c is a conse-
quence of the localized nature of displacement fields of
the individual dislocations and of the concentration of
dislocation activity on only few slip planes. Hence, the
localization of the deformation fields observed should
not be considered as an indication of a mesh depen-
dent solution typically observed in the analysis of rate-
independent elastic-plastic materials, but rather an in-
dication of highly localized displacement fields of the
dislocation pile-ups. As will be shown below, the wave-
lengths of the (ˆ) fields are large relative to the character-
istic mesh length and, hence, the observed localization
of deformation can not be related to the one observed
in rate-independent analyses.

Contour plots of theσ11 stress at the same three val-
ues of the rotation angle are shown in Fig. 7a–c. As
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Figure 5 The distribution of dislocations at three values of the rotation angle: (a)θ = 0.005; (b)θ = 0.010 and (c)θ = 0.015.N,M andB are used
to denote positive andH, ∇ andC negative dislocations on theφ= +30◦,−30◦, and 90◦, respectively.

expected, theσ11 stress is tensile in the upper and com-
pressive in the lower portion of the beam. However, the
σ11stress field is not very smooth in the middle region of
the beam, which is the result of the effect of a high local
density of dislocations. A contour plot of the comple-
mentary ˆσ11 stress field at the rotation angleθ = 0.010
is shown in Fig. 8a. The complementary stress is also
tensile in the upper and compressive in the lower por-
tion of the beam. However, relative to theσ11 stress
field, this field is very smooth. A contour plot of the
corresponding discrete-dislocation based ˜σ11 stress at
the same value ofθ = 0.01 is shown in Fig. 8b. Since the
stress fields of individual dislocations are singular and
decay inversely with distance from the dislocation, their
effect is visible where the dislocations are very close to
the nodal points. As evident from Fig. 8b, the collec-
tive dislocation structure gives rise to a high tensileσ11
stress in the lower and to a high compressive stress in the
upper region of the beam. Since the discrete-dislocation
σ̃11 stress fields and the complementary ˆσ11 stress fields
are of opposite sign over much of the beam, the mag-
nitude of the corresponding totalσ11= σ̂11+ σ̃11 stress
is considerably reduced.

As discussed earlier, dislocations generated on the
φ=±30◦ slip system are geometrically necessary. The
density of geometrically necessary dislocations is a
function of the plastic rotation angle,θ p, defined by
Ney [2] and Ashby [3] as:

ρG = nG

Lh
= θ p

Lb1
(23)

wherenG is the number of geometrically necessary dis-
locations,b1 the component of the Burgers vector par-
allel to thex1-axis and is given as:b1= b cosφ. θ p

can be defined asθ p= θ − θe whereθe is the elastic
rotation angle, which is related to the bending moment
as:

M = Eh3

12(1− ν2)

(
2θe

L

)
. (24)

At each level of the total rotation angleθ, θe can be de-
termined by inverting Equation 24 and using the value
of the corresponding bending moment as given in Fig. 3.
Thenθ p can be determined fromθ p= θ − θe and the
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Figure 6 Deformed finite element meshes obtained in the discrete-
dislocation analysis of plane strain beam bending at the three values
of the rotation angle indicated in Fig. 5.

Figure 7 Contour plots of theσ11 stress obtained in the discrete-
dislocation analysis of plane-strain beam bending at the three values
of the rotation angle indicated in Fig. 5.

predicted number of geometrically necessary disloca-
tions, nG, computed from Equation 23. This number
can then be compared to the number of dislocations
observed in the corresponding dislocation structure,
Fig. 5a–c.

Following the procedure outlined above it is found
that: (a) the observed number of dislocations is gener-
ally 20–30% higher than the predicted one. This indi-
cates that a significant fraction of dislocations are statis-
tically stored rather than geometrically necessary; and,

Figure 8 Contour plots of: (a) the ˆσ11 stress and; (b) the ˜σ11 stress ob-
tained in the discrete-dislocation analysis of plane-strain beam bending
at the rotation angleθ = 0.010. The corresponding contour plot for the
total stressσ11= σ̃11+ σ̂11 is shown in Fig. 7b.

(b) a nearly linear increase in the dislocation density
with the plastic rotation angle, which is in accordance
with Equation 23. The slope of theρG vs.θ P line (the
results not shown for brevity) is found to be within 10%
of the value 1/Lb1 predicted by Equation 23.

3.2. Crystal-plasticity formulation
The discrete-dislocation modeling results presented
and discussed in the previous section, clearly estab-
lished that one of the salient features of the plastic
flow behavior at the micron-length scale is its local-
ization into slip bands. Hence, a continuum-plasticity
model which may be proposed to replace the discrete-
dislocation analysis must be able to reproduce this fea-
ture of plastic deformation at the micron-length scale. In
a series of papers by Asaro and co-workers [e.g. 11, 12],
it was shown that the crystal-plasticity model of the
type used in the present work can give rise to the lo-
calization of plastic flow into shear bands. However,
such localization takes place only after at least a few
percent of “uniform” plastic strain. Localization of the
plastic flow into slip bands observed in the discrete-
dislocation analysis, Fig. 6a, on the other hand, takes
place from the very onset of plastic deformation. To pro-
mote plastic-flow localization at small strains within the
crystal-plasticity model used in the present work, the
strain rate sensitivity parameterm is set to a low value
(m= 0.005) and the initial deformation resistance of an
element is assumed to be proportional to the strength
of the dislocation source(s) it contains. This procedure
ensures that the plastic flow is initiated in the elements
containing the most active dislocation sources.

Localization of the plastic flow in shear bands is ac-
companied by a significant rotation of the crystal lattice.
However, slip bands resulting from dislocation glide,
preserve the orientation of the crystal lattice. To re-
solve this discrepancy, a small displacement-gradient
formulation of the crystal plasticity theory discussed in
Section 2.2 is used which does not provide for lattice
rotation.

Contour plots of the equivalent plastic strain at three
levels of the total axial strain obtained in the crystal-
plasticity analysis of the beam in plane-strain tension,
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Figure 9 Contour plots of the equivalent plastic strain obtained in the
crystal-plasticity analysis of plane-strain tension at three values of the
axial strain: (a) 0.001, (b) 0.002, and (c) 0.003.

are shown in Fig. 9a–c. Distorted finite element meshes
are not shown since, in this case, localization of the plas-
tic flow in deformation bands is not as well developed as
in the discrete-dislocation analysis and is more difficult
to infer from the distorted meshes. The results shown
in Fig. 9a–c, indicate that during plane-strain tension
plastic flow mainly localizes into a band whose loca-
tion coincides with the slip band observed in Fig. 4b.
As the imposed axial strain increases, localization of
the plastic flow becomes more pronounced.

As discussed earlier, the initial slip resistance of each
element is assumed to be proportional to the value of the
dislocation-source strengthτnuc it contains. The initial
slip resistances of the elements which do not contain
dislocation sources is set to scale with 1.2 ¯τnuc, which
is one standard deviation higher than ¯τnuc. The slip-
resistance/source-strength proportionality constant is
determined by fitting the axial-stress vs. axial strain
plane-strain tension curve obtained using the discrete-
dislocation approach, Fig. 4a. The result of the fitting
procedure is also shown in Fig. 4a. It is evident that
the discrete-dislocation based results for plane-strain
tension can be reproduced fairly well by the continuum
crystal-plasticity model, at least in the small strain
range analyzed in the present work. The advantage of
the crystal-plasticity analysis is that it could be com-
pleted in only a fraction (typically 1–2%) of the time
required for completion of the corresponding discrete-
dislocation analysis. It should be noted, however, that
in our discrete-dislocation analysis a Fortran-based
computer program is interfaced with the commercial
finite element program Abaqus/Standard [10] which
requires linking of the two at each time step. Conse-
quently, more modest reductions in computer time are
to be expected should the discrete-dislocation analysis
be carried out using a single computer program.

The variation of the normalized bending moment
M/Mref with the angle of rotationθ as predicted by
the crystal plasticity analysis is shown in Fig. 3. A

comparison of the discrete-dislocation plasticity and
crystal-plasticity based results shown in Fig. 3 indi-
cate that: (a) while yielding takes place at any non-zero
level of the applied stress within the crystal-plasticity
framework, a visible deviation of theM/Mref vs. θ
curve from linear elastic behavior occurs at a value of
M/Mref which is quite comparable to that predicted
by the discrete-dislocation analysis; (b) in spite of the
fact that no explicit account of strain hardening of the
material is taken into account, theM/Mref vs.θ curve
increases in the plastic region. This observation can
be attributed to the effect of intersecting deformation
bands which impede each others propagation and due
to the extension of the shear bands into the surrounding
material with a higher slip resistance; and (c) the rate of
strain hardening predicted by the crystal-plasticity anal-
ysis is substantially smaller than that predicted by the
discrete-dislocation plasticity. This implies that the in-
teraction of the deformation bands is not strong enough
in comparison to the long- and short-range interac-
tions between discrete dislocations and hence can not
fully account for the hardening effects observed within
the discrete-dislocation plasticity analysis. In addition,
conventional crystal plasticity does not account for ad-
ditional hardening which arises from the presence of
geometrically necessary dislocations.

A contour plot of the equivalent plastic strain at the
rotation angleθ = 0.010 is shown in Fig. 10a. Localiza-
tion of plastic deformation into broad deformation
bands and intersections of these bands are evident. A
comparison of the results shown in Fig. 10a with the
ones shown in Fig. 6b shows that there is a crystal-
lographic relationship between the deformation bands
predicted by the crystal-plasticity analysis and the slip
bands obtained in the discrete-dislocation analysis.
Thus one of the salient features of plastic deformation
at the micron-length scale, the localization of plastic
flow, is predicted in the crystal plasticity analysis of
beam bending.

A contour plot of theσ11 stress at the rotation an-
gle θ = 0.010 is shown in Fig. 10b. Since the plastic
flow localization if controlled by the elements with a
low slip resistance and strain hardening is not consid-
ered explicitly, there is a close relationship between the

Figure 10 Contour plots of: (a) the equivalent plastic strain; and
(b) theσ11 stress obtained in the crystal-plasticity analysis of plane-strain
bending at the rotation angle: (a)θ = 0.010. The discrete-dislocation
plasticity contour plot corresponding to (b) is shown in Fig. 7b.
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equivalent plastic strain contour plot, Fig. 10a, and the
σ11 stress contour plot, Fig. 10b. A comparison of the
results shown in Fig. 10b with the ones shown in Fig. 7b
shows that: (a) The maximum stress levels predicted by
the crystal-plasticity analysis, Fig. 10b, are consider-
ably smaller than the corresponding ones predicted by
the discrete-dislocation plasticity analysis, Fig. 7b. This
observation is consistent with the lower rate of strain
hardening predicted by the crystal-plasticity approach,
Fig. 3. Generation of dislocation pile-ups which act
as load springs is the principle cause of high stresses
obtained within the discrete-dislocation analysis. As
stated earlier, the interactions of deformation bands
within the crystal-plasticity approach are too weak to
give rise to a significant increase in the bending mo-
ment in the plastic region; and (b) In addition to failing
to predict the correct maximum stress levels, the crystal-
plasticity analysis is not able to reveal many details in
the stress fields observed within the discrete-dislocation
analysis, Fig. 7b. This limitation of the crystal-plasticity
approach could be critical if the present analysis is to
be extended to include initiation of failure which may
be controlled by local buildup in stress.

Some of the deficiencies of the crystal-plasticity
model used can be overcome if non-local effects are
to be included. Within a non-local crystal-plasticity
formulation, the constitutive behavior of the material
depends both on strain and strain gradient. The rela-
tionship between plastic strain gradient and geomet-
rically necessary dislocations is well-established [e.g.
13]. Thus, as bending proceeds and, as discussed in the
previous section, the density of geometrically neces-
sary dislocations increases, the plastic strain gradient
also increases, giving rise to a higher deformation re-
sistance. This, in turn, would result in a larger rate of
strain hardening in theM/Mref vs.θ relationship, Fig. 3.
In addition, localized regions with high stresses of the
type predicted by the discrete-dislocation analysis are
more likely to develop. A non-local crystal-plasticity
model for the analysis of deformation behavior of the
material at the micron-length scale is currently being
developed [14].

4. Discussion

5. Conclusions
The main objective for the present work was to analyze
plane-strain bending of a micron-size beam using both
a discrete-dislocation plasticity formulation and a con-
tinuum crystal-plasticity formulation in order to deter-
mine if a computationally less costly continuum analy-
sis can reproduce the essential feature of the plastic flow
associated with the collective motion of discrete dislo-
cations. Since one of the salient features of the discrete-
dislocation plastic flow is its localization into slip
bands, material parameters for the continuum crystal-
plasticity model are selected in such a way that plastic
flow localization into deformation bands occurs even at
very small strains. The results obtained suggest that:

(1) Global response of the material at the micron-
length scale (e.g. the bending moment vs. rotation an-

gle relationship) can be fairly well reproduced using
the continuum formulation;
(2) Plastic flow localizes into deformation bands

which are crystallographically related to the discrete-
dislocation based slip bands. However, the deformation
bands are broader and fewer in number than the corre-
sponding slip bands;
(3) Stress and deformation fields predicted by the con-

tinuum model do not generally contain many details of
the corresponding discrete-dislocation fields. This dis-
crepancy could be critical when one considers issues
such as the onset of damage in the material during de-
formation which is governed by the local maxima in
the stress and/or strain fields.
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