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Bending of a micron-size single-crystalline beam is analyzed using both
discrete-dislocation plasticity and crystal-plasticity formulations. Within the
discrete-dislocation plasticity formulation, dislocations are treated as infinitely long
straight-line defects residing within a linear elastic continuum. Evolution of the dislocation
structure during bending is simulated by allowing the dislocations to glide in response to
long-range interactions between different dislocations, and between dislocations and the
applied stresses, and by incorporating various short-range reactions which can result in
dislocation nucleation, annihilation or pinning. At each stage of bending, the stress and
deformation fields are obtained by superposing the dislocation fields and the
complementary fields obtained as a solution of the corresponding linear-elastic boundary
value problem. The results obtained show that there is a continuing accumulation of
“geometrically necessary” dislocations during bending which is expected due to the
gradient in the strain throughout the beam height. In addition, it is found that localization of
plastic flow into slip bands is a salient feature of materials deformation at the
micron-length scale. Within the crystal-plasticity analysis, of beam bending, a small
displacement gradient formulation is used and the material parameters selected in such a
way that plastic flow localizes into deformation bands at low strains. It is found that, while
the global response of the beam predicted by the two approaches can be quite comparable,
fine details of the dislocation-based stress and deformation fields cannot be reproduced by
the continuum crystal-plasticity model. © 2007 Kluwer Academic Publishers

1. Introduction the anisotropy of elastic properties substantially affects
The behavior of isotropic linear elastic and isotropicstress distribution throughout the beam. In the plastic
elastic-plastic beams subjected to pure bending is rekegion, plastic anisotropy arising from the crystallo-
atively simple and well established. In linear elasticgraphic nature of the material and of deformation slip
beams, the normal stress parallel to the bending axis ign a limited number of slip systems results in an even
distributed linearly in the through-the-height direction, more pronounced dependence of the beam behavior on
with the inner and outer layers of the beam subjected téhe orientation of the crystal lattice relative to the bend-
the maximum stresses of the opposite sign. Under thang axis.

condition of equal yield stress of the material under the In recent years, a new field of design, analysis,
uniaxial tension and compression conditions, the onseand processes of micron-size structures and machines
of plastic yielding in an elastic-plastic beam, takes placéhas emerged. Since many components in such micro-
simultaneously at the outer and inner surfaces of thetructures and machines are subjected to in-service
beam. As bending continues, the plastic zone advancdsnding loads, understanding of the bending behavior
toward the centerline of the beam. For an ideal plasof micron-size beams can provide the data needed in de-
tic material, the plastic zone reaches the centerline agign of such micro-components. It should be noted that
a critical value of the bending moment, which is equalthe micron-size components are generally composed of
to 1.5 times its value at the onset of plastic yielding.single crystalline materials. Hence, as discussed above,
Due to inability of the beam to support any additionaltheir behavior is intrinsically anisotropic and depen-
bending load, plastic buckling occurs. Similar buckling dent on the orientation of the material’s crystal struc-
does not take place in beams made of strain-hardeniniyre. In addition, at the micron-length scale, the effect
materials. In contrast to the isotropic beams, the beeof discrete dislocations, in particular their long-range
havior of anisotropic (e.g. single-crystalline) beams isstress and deformation fields and short-range interac-
more complex. During bending in the elastic region,tions which can result in dislocation nucleation and
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annihilation and formation of pile-ups and patterns be-+the stress fields of individual dislocations are singular
comes important. Recently, Cleveringtzal. [1] carried  and hence not readily handled by numerical techniques
out a detailed discrete-dislocation analysis of singlesuch as the finite element methods, they are evaluated
crystal beam bending which clearly showed the role ofanalytically.): and (b) the (") complimentary fields asso-
dislocations. In particular, it is found that dislocation ciated with the imposed boundary conditions corrected
nucleation and motion during bending are not purelyfor the effect of dislocations. Since the (") fields are
stochastic but rather occur in such a way to produce thgenerally smooth, they can be determined by solving
so-called “geometrically necessary” dislocations [2, 3].a conventional linear-elastic boundary-value problem
The presence of such dislocations reduces the bendssing the finite element method.
ing stresses within the beam considerably relative to Due to the intrinsic complexity of a three-
the stresses predicted by the elastic continuum modelsimensional analysis of the dislocation structure and
While the work of Cleveringat al. [1] clearly demon- its evolution, and the associated computational require-
strated the importantrole discrete dislocations may playnents, only a two-dimensional formulation is used.
in affecting the material behavior at the micron-lengthWithin this formulation, dislocations are treated as in-
scale, it also revealed that discrete-dislocation analyfinitely long, straight, paralleland all of the edge charac-
sis is extremely computationally expensive. This mayter. They are allowed to interact with each other through
become a major hindrance for its use as a means of getheir long-range stress fields and to affect the imposed
erating the materials property data at the micron-lengttraction and displacement boundary conditions. The in-
scale. Namely, due to a stochastic nature of the discretdinite, homogeneous-medium dislocation stress and de-
dislocation approach, numerous simulation runs havéormation fields which are used to compute the (7) fields
to be made in order to obtain statistically reliable dataare readily available [e.g. 6, 7]. Only dislocation glide
needed in the desing of micron-size components. on well-defined slip planes is allowed and, hence, the
In the present work, a comparative analysis of bendehange in the potential energy of the body due to a
ing of a micron-size beam is carried out using discretepotential infinitesimal change in the position of the dis-
dislocation plasticity and crystal-plasticity formula- locationi results in the Peach-Koehler fordé given
tions. The main objective of the work is to establish if by:
the crystal-plasticity approach, which is computation-

ally quite less demanding, can reproduce the essential R A ~j i
features of the materials deformation at the micron- fr=n-|o+ ZU b @
length scale. 17

The organization of the paper is as follows: In Sec-yhereni is the corresponding slip plane normai,
tions 2.1 and 2.2, the basic formulations of discretethe Burgers vector, and and ' are the two stress
dislocation plasticity and crystal-plasticity are pre- fie|ds discussed above. As indicated by Equation 1, the
sented, respectively. The results obtained using botpeach-Koehler force includes the interactions of a given
approaches are presented and discussed in Sections 3id|ocation with the applied stress field and with all
and 3.2, respectively. Main conclusions resulting fromgiher dislocations in the material. The force is coplanar
the present work are summarized in Section 4. with the slip plane of the given dislocation and collinear
with its Burgers vector. As aresult of the Peach-Koehler
force, each dislocation glides on its slip plane in the
direction of the Peach-Koehler force. The magnitude of

2.1. Discrete-dislocation formulation the glide velocityy' of dislocationi is taken to be drag
Following Cleveringeet al. [1], a discrete dislocation controlled, and hence, linearly related to the Peach-

analysis of bending of a single-crystalline beam is Cary Sehler force as:
ried out using the formulation proposed by Van der :
Giessen and Needleman [4] and Cleveriegal. [5]. fi — By )
Within this formulation, evolution of the deformation
state and the dislocation structure during loading isvhere B is the drag coefficientB =10~ Pas is as-
computed in an incremental manner. At the beginningsumed in the present work which according to Kubin
of atime increment at thig the position of each disloca- et al. [8] is a representative value for aluminum. When
tion in the body is known and the body is in equilibrium dislocation pile-ups are formed, the position of disloca-
with the applied tractions and displacements. Then, fotions in them is quite unstable, leading to high-velocity
an increment in loading, the formulation of Van der oscillatory motions. To remove these essentially incon-
Giessen and Needleman [4] and Cleverirgal. [5]  sequential effects, a cut-off velocity of 20 m/s is used.
can be used to determine the equilibrium stress field3his value of the cut-off velocity is found to be low
and the dislocation structure at the end of the time inenough to eliminate the undesirable oscillations and
crement (time=t + At). yet high enough not to affect the results significantly.
The main conceptinthe formulation proposed by Van In addition to the long-range dislocation interactions
der Giessen and Needleman [4] and Clevergtgd [5]  discussed above which contribute to the Peach-Koehler
is that the displacement, strain, and stress fields can Herce and also affect the imposed boundary conditions,
expressed as the superposition of two fields: (a) the ("$hort-range dislocation-dislocation interactions which
fields which are, in turn, the result of superposition of may resultin nucleation and annihilation of dislocations
the (infinite, homogeneous-medium) fields of individ- are also considered. Dislocation nucleation is modeled
ual dislocations in their current configuration. (Sinceby simulating the operation of Frank-Read sources.

2. Computational analysis
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Within the present two-dimensional formulation, point- %A
type Frank-Read sources are considered which generat
a dislocation dipole when the magnitude of the Peach- N P
Koehler force atthe source exceeds a critical valugd \\\ é 1 G
(b is the magnitude of the Burgers vector which is set §§§ SR> h
equal to 0.25 nm) during a time peritg. The dipole //S zé\\
separating distande,is taken to be dependent on the dd R N
source strengtlin,c as: M, 8 L M0
E b Figure 1 A schematic of the discrete-dislocation boundary value prob-
nuc (3) lem for plane-strain beam bending. Positive dislocations on each of the

= 2 _ . e : ;
47 (1 — v) Tnuc three slip systems are illustrated to indicate the sign convention used.

whereE andv are the Young’s modulus set to 70 GPa
and the Poisson’s ratio set to 0.33, respectively. Atbending momen
the distancd. ., the slip-plane resolved shear stress

acting on one dislocation in the dipole due to its in- hy/2
teraction with the other dislocation in the dipole is M =/ X2011(E£L /2, X2) A% (6)
exactly balanced by the overall slip-plane resolved —h/2

shear stress acting on the corresponding source. T
strength of the dislocation sources,, is randomly
chosen from a Gaussian distribution with mean strengt

Thue = 50 MPa and standard deviation of &,4. Based

on Equation (3), the mean nucleation distance isand amaximum negative valuexgt=—nh/2. Al_so, the
Lhuec=1250b=315 nm. The nucleation time which curva'gurek'ls umfor.m and 'equal oL, wh|le th.e
e ; . [guantltyu in Equation (4) is zero. Once dislocations

e generated) is no longer zero and its value can be

etermined from the pure bending condition, i.e. from
the condition that the net force in tlxg direction, F4,
fdefined as:

M, is given by:

ht‘?uring loading in the elastic regime, the only non-zero
}ip-plane stress componentds; which varies linearly
with x, between a maximum positive valueat=h/2

to be generated at a Frank-Read source is set to
fixed value oft,,c=0.01us for all sources. Following,
Cleveringaetal. [1], a fixed time increment okt =5x
10~1%s s used in simulations. Consequently, timing o
the individual events of dipole generation or annihila- h/2

tion may be slightly incorrect. Fortunately, these effects F;(x; = +L/2) = i/ o11(£L/2, x2)dx =0

are found not to significantly affect the overall results. —h/2

Two dislocations with opposite Burgers vector glid- (7)
ing on the same slip plane are allowed to annihilatevanishes. Since each stress component can be decom-
when they are with in a material-dependent, critical anfosed into its (') and (*) parts, Equation 7 can be rewrit-
nihilation distance_. Following Cleveringat al. [1],  ten as:

a fixed valueLe =6b=1.5 nm is used.

Since the material is taken to be of high purity,
fixed, localized obstacles to dislocation motion (e.g.
nano-precipitates, nano-inclusions) are not considered.
Furthermore, short-range interactions between dislo- h/z
cations gliding on intersecting slip planes which can + /h 2011(:|:L/2, X2) dxo (8)
result in formation of various sessile dislocation con- -

figurations or locks of different strengths are not incor- ) ) i
porated explicitly. Never the less, as will be shown later,] "€ S€cond term on the right-hand side of Equation 8

when such dislocations are close to intersecting, theifS r¢adily evaluated by superposition using the known
interactions through the stress fields can be so strong0Sitions of dislocations and stress fields for indi-
that they can render them essentially sessile. vidual dislocations within an isotropic, linear-elastic

The boundary value problem corresponding to p|‘,jmeinfinite-medium. The first term on the right-hand side
strain bending of a beam is shown schematically in0f Equation 8 is evaluated by first determining the)
Fig. 1. The beam has a width, and heighth, and fields which are consistent with the following boundary

its sides are subject to rotation. Aq(x,) Cartesian conditions:

coordinate system is used with its origin located at the _, . (1) . _

beam midpoint and its axes parallel with the edges ofd11 = —011, 015’ = =612 0N Xz = +h/2; (9)

the beam, Fig. 1. Thus theg — x,-plane is the plane () ~ ~(1) ~
. " 077 = =01 £ 6x =— on x;==+L/2.

of deformation and the boundary conditions for plane- 1 1072, 01 = 012 ! /

strain beam bending can be defined as: (20)

_ _ _ Clearly, the (¥ fields account for the effect of
Up =+ +U), 012=0 on > =%L/2 (4)  yocation-based boundary tractions and displace-

012=0, 0=0 on xp,==h/2 (50 ments on the prescribed rotation. However, this field
does not ensure pure bending i.eoﬁ)“ls substituted

whered is the imposed angle of rotation on the left for 511 in Equation 8, a non-zero value Bf is gener-

and the right sides of the beam. The work-conjugatelly obtained. To reduce the magnituderafto zero, a

h/2
Fl(X1=:i:L/2)=:|:</ 611(£L/2, x2) dx;
—h/2
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of 404 slip planes. The material is taken to be initially
dislocation-free and to contain, 808 dislocation sources
(two per slip plane), Fig. 2(b). The results pertaining to
the bending, moment M which will be presented and
discussed in Section 3 are all normalized relative to a
reference momenil,es defined as:

@ 2 (M2 _ 2_ (h\?
N - . Ml’ef = H /_h/z Tnucxzzdxz = §‘L’nuc(§> (13)

which corresponds to the linear distribution of the
stress:o11 = ThucX2/(h/2), in the through-the-height
direction.

2.2. Crystal-plasticity formulation

() In this section, a plane-strain bending analysis of the
Figure 2 (a) The 90«30 quadrilateral finite-element mesh and (b) the beam shown ln.F.Ig' lis C.amed O.Ut l_JSIng a con_tlnu-
distribution of two-dimensional Frank-Read type dislocation sourcesUM CryStaI'plaSt_l(?lty materllal constltutlv_e formljllat'on'
used in the present work. Variable size of the symbols is used in (b order to facilitate a direct comparison with the
to denote the variation in the strength of the sources. The smaller theliscrete-dislocation based results, a small displace-

source strength, the larger the symbol. ment-gradient version of this formulation is used [9].
_ o _ Within this formulation, the total strain ratecan be
uniform uniaxial stress field: written as:
Fi(xy =L/2 . . )
68 = _hba=1/2) - /2) (11) £=i%4 P (14)

needs to be applied. It can be readily shown that thi/here the elastic strain rat€ is given in terms of the
quantityU appearing in Equation 4 is relatedotﬁ)‘as: stress rate by the generalized Hooke’s law:

e ~-1
51(?(1 — )L ¢ =C"[o] (15)
U= -——-"—">" (12) . . s
2u and the plastic strain raté is given by:
The displacemenit) is calculated separately fox; = &P — Z VPY @=1,23 (16)
L/2 andx; = —L /2. Since botlr ) ands™ stress fields m

are self-equilibrating, the twid values should be iden- ) ) ) ) ) L
tical. Numerical evaluation df is found to be quite Cin Equa_tlon (15) is a forth-order isotropic elasticity
accurate causing the twd values to differ only at the tensor defined as:
fourth significant digit. It should be noted that the quan- E
tity U is not used in the calculation of the complemen- C= [| gun | ® |] 17)
tary () fields but rather these fields are obtained as the 1+v 1+v
superposition of the (% and the (¥ fields. /

Abeam haing dimensiond. = 1.2 um anch =4 m yvher_e | and |’ are the second— and the forth-order
subjected to a bending ratedf 0.5 x 108 st is used |(_Jlent|ty tensors, respect[vely, am®l denotes a tenso-
in all calculations. The computational domain is dis-"@8l product.y* in Equation 16 represents the shear
cretized into 90« 30 isoparametric plane-strain quadri- Fat€ on slip systera characterized by a unit plane nor-
lateral elements, Fig. 2a. Contour plots forthestress  Mmaln® and a unit slip directiom®. P* in Equation 16
(the results not shown for brevity) indicate that the finite'S @ Sécond-order symmetric Schmid tensor associated
element formulation used can reproduce the bendin/ith the slip systena and is defined as:
stress distribution in the elastic regime with only minor

1
end effects £0.2% of o11). Also, the corresponding P* = E[m‘” ®n* +n* ® m°] (18)
bending moment is found to be within 0.2% of its exact
valueM = %ﬁﬂ)(%@). In accordance with the discrete-dislocation formula-

In all calculations, three slip systems are consideredtion presented in the previous section three slip sys-
two of them are oriented gt= +30° from thex;-axis  tems ¢ =1, 2, 3) are considered, two inclined #80°
while the third one is parallel to the-axis (p = +90°).  with respect to the; axis and the third one normal to
In order to avoid numerical difficulties which may arise it. Inverting Equation 15 and combining the resulting
when dislocations try to exit the beam through the sidesequation with Equations 14 and 16 yields:
along which the displacements are prescribed, only the
+30 slip planes which do not intersect the sides are 5 = C['s _ Z e Pa:| (19)
considered. The 9Glip planes are introduced only over =
the central zone of widtlh. — h/tan 30 within which
the+30 slip planes intersect. The slip plane spacing isSince the discrete-dislocation formulation discussed
set to 100 Burgers vectors (25 nm) resulting in a totain the previous section is rate dependent due to the
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assumed dislocation velocity law, Equation 2, the con-  2.00E+00

tinuum material treated in the present section is taken [
to be viscoplastic. Furthermore, it is assumed that the [
shear rate on either of the three slip systems is given bys 1 .soe+00 |
the following power-law relation: ] [

/Discrete Dislocation (90x30)

— Crystal Plasticity
(90x30)

-

* 1.00E+00 | Discrete Dislocation (46x16)

1/m
Y = yo| — sign( 20
y Vo[sa] onw) (20
whereyy is a reference shear strain rate,the strain-
rate sensitivity parameter?, the resolved shear stress
ands®, the slip resistance all associated with slip sys-
tem«. In all calculationsyg=0.001 andm=0.005 0.00E400 ) . )
were used. As will be discussed later, a low value for g oees00 5.00E-03 L00E-02 LSOE-02 2 00E-02
m(<0.01) is needed to promote shear band formation Rotation, & (Rad)
at small strains.

In general, the magnitude of inp resistars®ein- Figure 3 l\_lormaliz_ed bending mqmenVI/Mref vs. rotation angled
creases during deformation as a result of self-hardenin lationship predicted by the discrete-dislocation and the crystal-

. ticit lyses.

and latent-hardening phenomena. Consequently, dnooc anayses
evolution equation fors® has to be defined. In the ) ) o )
present work, however, neither self-hardening noiconsiderably since the kinetic energy never increased
latent-hardening effects are explicitly considered and@Pove 0.1% of the total energy of deformation.
hence, an evolution equation fet is not needed. In-
stead, in order to mimic the distributions of strengthsz. Results

of the dislocation sources, the places where slip origi3 1. Discrete-dislocation formulations

nates within the discrete-dislocation framework, a COFig. 3 shows the variation of the normalized bending
responding distribution of initial slip resistance is Used-momenﬂvl/Mrefwith the angle of rotatiofi. Before the
This approach should enable for slip to be initiatedgngset of dislocation nucleation, beam bending is purely
and controlled by the elements with the most favor-g|astic and, thus, a linear relationship exists between
able combination of a low slip resistance and a hlghM/Mref andd. When the normalized bending moment
resolved shear stress, the same elements which contgigaches a value of1.21 the first dislocation dipole nu-
dislocation sources with an optimum combination of agjeates and beyond this point the/ M,e; vs. 6 relation-

low source strength and a high Peach-Koehler force. A§hip is no longer linear. Nevertheldds M,es continues

will be shown later, this approach promotes localizationyg increase witt® but at a lesser rate until it reaches a
of (continuum) plastic flow into narrow bands, which |5cal maximum value of-1.33. Subsequentiyl/ Myef
resemble the slip bands which characterize the plastigecreases to a local minimumy{.27) and then begins
flow within the discrete-dislocation approach. Further-ig increase again at a nearly constant rate. MH®/,ef
more, the resistance to the extension of such bands ey ¢ relationship in the “plastic” regime is not smooth
erted by the surrounding elements with a higher slipyyt rather characterized by high-frequency fluctuations
resistance and by other (intersecting) bands implicitlyyhose occurrence is the consequence of discrete dis-
account for self hardening and latent hardening, respeggcation events (e.g. dipole nucleation or annihilation,

5.00E-01

Normalized Bending Moment

tively. . . dislocations reaching the free surface, etc.). Occasion-
The resolved shear stress on slip system®, is )iy, the M /My vs. @ curve develops a major spike
defined as: (e.g. the one & ~ 0.09), which indicates a significant

rearrangement in the dislocation structure such as the
one which occurs when one dislocation pile-up begins

where the raised dot is used to denote a scalar produdP Penetrate through another one.

Substitution of Equations 20 and 21 into Equation 19, .It.n ;:Iasts;?]al ?IaSt'C't¥' plastllcc:tyhlelgmg IS ﬁsugﬁe%'to
yields a stress evolution equation in the form: iniiate at the Iree-surtaces ot the béam. 1he bending

moment at the onset of plastic yieldimd, is then re-

& (o) (22) lated to the material's yield stregg through My =

20y(h/2)?/3. Usingthis relationship ani, /M = 1.21,

Euler forward integration scheme is used to integratehe yield stress is evaluated@s~ 60.5 MPa. However,
this equation so that the stress rate at the end of a timié should be noted that within the discrete-dislocation
step (time=t + At), o1, at is evaluated using the stress framework, this value of the yield stress should be con-
at the beginning of the time incremet, This inte-  sidered unique to bending and to a given distribution of
gration procedure is incorporated into Vectorized Userdislocation sources.
Material Subroutine (VUMAT) of the commercial fi-  To demonstrate the effect of loading type on the mag-
nite element program Abaqus/Explicit [10]. To make nitude of yield stress, the same beam used inthe bending
the calculations more efficient, the materials density isanalysis, Fig. 1, with the same distribution of sources,
increased by two orders of magnitude. Such densityis subjected to plane strain tension, with the loading ap-
scaled procedure did not affect the quasi-static resultplied in thex;-direction. The boundary conditions used

% =P (21)
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6.00E+07 @ for a coarser 4616 mesh are presented in addition to
the ones for the 9930 mesh. The values of the bend-
ing moment at the onset of plastic yielding are quite
4.50E+07 ¥ comparable in the two cases. However, the peak values
Diserete Dislocation and the local minimum values differ considerably. The
rates of strain hardening in the later stages of plastic
3008407 | deformation are quite similar in the two cases but the
level of the normalized bending moment is lower in the
case of the coarser mesh by about 0.12. The observed
LSOEHT | effect of the mesh size could be the result of one or more
of the following factors: (a) potential differences in the
resolution of the () fields; (b) differences in discretiza-
Q.00EH00 Tttt bttt tion of the nodal values af;;”"stress components which
0.00E+00 5.00E-04 1.00E-03 1.50E-03 2.00E-03 2.50E-03 : A\ £
Strain. UL are gsed to construct the loading term fpr th_e @) flel_ds;
’ (c) differences in the accuracy of numerical integration
(b) of the stress field alongy = +L /2 beam sides.

The dislocation structure at three values of the rota-
tionangle are shownin Fig. 5a—c. Dislocation pile-ups
consisting of positive dislocations on the slip planes in-
clined at+30 relative to the positive;-axis and of
negative dislocations on slip planes inclined-80
relative to the positive;-axis can be seen at each level
Figure 4 Plane _strain t_ension results of: (a) _A?<ial stress vs. axial straingf the rotation ang|e. Since dislocations are nucleated as
gom discrete-dislocation and crystal-plasticity analyses and (b) thegq1ag and only dislocations of one sign are observed

eformed finite element mesh, at the axial straia 0.002 obtained . .. . .. .
in the discrete-dislocation analysis. on any given plane, this implies that the missing dislo-
cations have exited the beam through the top or bottom
free surfaces. The remaining dislocations give rise to
in this case include stress-free surfaceszat +h/2  plastic bending and can be considered as “geometri-
and a uniform distribution of tensile; displacements cally necessary” in order to account for the gradient in
and the zero shear stress condition along the beam sidpkastic strain along the slip planes. However, not all the
atx; =+L /2. The axial stress vs. axial strain resultsdislocations seen in Fig. 5a—c are geometrically nec-
obtained, Fig. 4a, indicate that the deviation from theessary. For example, a few dislocations are observed
linear elastic behavior first occurs at the stress levebn thegp = +90° slip planes. These dislocations do not
o =55 MPa, which is approximately 10% smaller than contribute to plastic bending and hence, are not geo-
the yield stress valuer{ = 60.5 MPa) deduced in the metrically necessary. The density of such “statistical”
bending analysis. This difference can be readily exdislocations is small at low values of the rotation angle
plained. In the case of plane-strain tension, the stress {g.g.6 = 0.005, Fig. 5a). At this stage thd /M vs.
uniform throughout the beam, hence, the magnitude of curve in Fig. 3 is rather flat. The interactions of both
the yield stress is solely controlled by the dislocationgeometrically necessary and statistical dislocations on
source associated with the lowest strength. In the casatersecting slip systems, Fig. 5b and ¢, creates barriers
of bending, on the other hand, the stress field is nonto dislocation motion, which gives rise to the observed
uniform and hence the yield stress is controlled by bottstrain hardening, Fig. 3.
the source strength and by the magnitude of the slip- The deformed meshes at the same three values of the
plane resolved shear stress acting on the source. Congetation angle as in Fig. 5a—c are shown in Fig. 6a—c.
quently, initial yielding is not generally associated with The slip steps which can be seen on the free surfaces
the source of minimum strength. The deformed meslof the beam are caused by the dislocations which have
corresponding to the axial (plane-strain tension) stramexited the beam. As discussed earlier, the highly local-
¢ =0.002 is shown in Fig. 4b. The mesh clearly showsized deformation pattern, seen in Fig. 6a—c is a conse-
that plastic flow has localized on one slip plane, which,quence of the localized nature of displacement fields of
as demonstrated by the results shown in Fig. 4a, givethe individual dislocations and of the concentration of
rise to a plateau in the stress-strain curve. The dislocadislocation activity on only few slip planes. Hence, the
tion structure (the results not shown for brevity) revealdocalization of the deformation fields observed should
avery low density of well separated dislocations glidingnot be considered as an indication of a mesh depen-
on a single slip plane. The dislocation density does notlent solution typically observed in the analysis of rate-
change substantially during deformation. This dislocaindependent elastic-plastic materials, but rather an in-
tion structure is consistent with the fact that due to thedication of highly localized displacement fields of the
localization of the slip on one plane, forest-dislocationdislocation pile-ups. As will be shown below, the wave-
type obstacles do not form and the dislocations are frekengths of the () fields are large relative to the character-
to exit the beam through the free surfacesat £h/2.  istic mesh length and, hence, the observed localization
In addition, this finding is consistent with the observedof deformation can not be related to the one observed
plateau in the stress-strain curve. in rate-independent analyses.

The mesh dependence of the normalized moment vs. Contour plots of ther; stress at the same three val-

rotation angle curve is shown in Fig. 3 where the resultaies of the rotation angle are shown in Fig. 7a—c. As
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Figure 5 The distribution of dislocations at three values of the rotation angle: £a.005; (b)6 = 0.010 and (cp =0.015. A, A and[> are used
to denote positive an¥, V and <] negative dislocations on tlfe= +30°, —30°, and 90, respectively.

expected, theq; stress is tensile in the upper and com-  As discussed earlier, dislocations generated on the

pressive in the lower portion of the beam. However, thep = £30° slip system are geometrically necessary. The

o1 Stressfieldis not very smoothin the middle region ofdensity of geometrically necessary dislocations is a

the beam, which is the result of the effect of a high localfunction of the plastic rotation angléP, defined by

density of dislocations. A contour plot of the comple- Ney [2] and Ashby [3] as:

mentaryo?; stress field at the rotation angle=0.010

is shown in Fig. 8a. The complementary stress is also NG 6P

tensile in the upper and compressive in the lower por- Pe=1h "~ Lby (23)

tion of the beam. However, relative to tlwg, stress

field, this field is very smooth. A contour plot of the whereng is the number of geometrically necessary dis-

corresponding discrete-dislocation based stress at  locationsb; the component of the Burgers vector par-

the same value &f=0.01is shown in Fig. 8b. Since the allel to the x;-axis and is given asy; =b cosg. 6P

stress fields of individual dislocations are singular andcan be defined a8P =6 — 6° where6*® is the elastic

decay inversely with distance from the dislocation, theirrotation angle, which is related to the bending moment

effect is visible where the dislocations are very close taas:

the nodal points. As evident from Fig. 8b, the collec-

tive dislocation structure gives rise to a high tensile Eh3 (298>
. . ; . M=—u+——).

stressinthe lower andto a high compressive stressinthe 12(1—v2)\ L

upper region of the beam. Since the discrete-dislocation

11 Stress fields and the complementaygystress fields At each level of the total rotation angle#® can be de-

are of opposite sign over much of the beam, the magtermined by inverting Equation 24 and using the value

nitude of the corresponding tot@l; = 611 + 611 Stress  of the corresponding bending moment as givenin Fig. 3.

is considerably reduced. ThendP can be determined frofP =6 — € and the

(24)
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Figure 8 Contour plots of: (a) the1] stress and; (b) the;1 stress ob-

tained in the discrete-dislocation analysis of plane-strain beam bending
5 at the rotation anglé =0.010. The corresponding contour plot for the
total stresr11 = 611 + 611 is shown in Fig. 7b.

i (b) a nearly linear increase in the dislocation density

il with the plastic rotation angle, which is in accordance

© with Equation 23. The slope of the; vs.6F line (the
results not shown for brevity) is found to be within 10%

Figure 6 Deformed finite element meshes obtained in the discrete-of the value J“—bl predicted by Equation 23.
dislocation analysis of plane strain beam bending at the three values

of the rotation angle indicated in Fig. 5.

3.2. Crystal-plasticity formulation

o, (Pa) The discrete-dislocation modeling results presented
w— e and discussed in the previous section, clearly estab-
o I0E lished that one of the salient features of the plastic
Zae  flow behavior at the micron-length scale is its local-
1#EEDE - jzation into slip bands. Hence, a continuum-plasticity
model which may be proposed to replace the discrete-
dislocation analysis must be able to reproduce this fea-
ture of plastic deformation atthe micron-length scale. In
a series of papers by Asaro and co-workers [e.g. 11, 12],
it was shown that the crystal-plasticity model of the
type used in the present work can give rise to the lo-
calization of plastic flow into shear bands. However,
such localization takes place only after at least a few
percent of “uniform” plastic strain. Localization of the
plastic flow into slip bands observed in the discrete-
sme  dislocation analysis, Fig. 6a, on the other hand, takes
1096408 place from the very onset of plastic deformation. To pro-

EOAE+DT

832606 mote plastic-flow localization at small strains within the
. BRE+0T .. .
szee  crystal-plasticity model used in the present work, the
strain rate sensitivity parameteris set to a low value
i (m=0.005) and the initial deformation resistance of an
element is assumed to be proportional to the strength
F?gure 7 Contour plots of theall‘ stress obtain_ed in the discrete- of the dislocation SOUI’CB(S) it contains. This procedure
dislocation analysis of plane-strain beam bending at the three valueg g ag that the plastic flow is initiated in the elements
of the rotation angle indicated in Fig. 5. . . . A
containing the most active dislocation sources.
Localization of the plastic flow in shear bands is ac-
predicted number of geometrically necessary dislocacompanied by a significant rotation of the crystal lattice.
tions, ng, computed from Equation 23. This number However, slip bands resulting from dislocation glide,
can then be compared to the number of dislocationpreserve the orientation of the crystal lattice. To re-
observed in the corresponding dislocation structuresolve this discrepancy, a small displacement-gradient
Fig. 5a—c. formulation of the crystal plasticity theory discussed in
Following the procedure outlined above it is found Section 2.2 is used which does not provide for lattice
that: (a) the observed number of dislocations is generrotation.
ally 20—-30% higher than the predicted one. This indi- Contour plots of the equivalent plastic strain at three
cates thata significant fraction of dislocations are statislevels of the total axial strain obtained in the crystal-
tically stored rather than geometrically necessary; andplasticity analysis of the beam in plane-strain tension,

o, (Pa)
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3. crystal-plasticity based results shown in Fig. 3 indi-
=  catethat: (a) while yielding takes place at any non-zero
level of the applied stress within the crystal-plasticity
framework, a visible deviation of th&1/Me vs. 0
curve from linear elastic behavior occurs at a value of
M /Mt Which is quite comparable to that predicted
by the discrete-dislocation analysis; (b) in spite of the
fact that no explicit account of strain hardening of the
material is taken into account, ti/ Mgt VS. 6 curve
increases in the plastic region. This observation can
be attributed to the effect of intersecting deformation
bands which impede each others propagation and due
i_i == tothe extension of the shear bands into the surrounding

i comparison of the discrete-dislocation plasticity and

s.1ara material with a higher slip resistance; and (c) the rate of
e strain hardening predicted by the crystal-plasticity anal-
L ysis is substantially smaller than that predicted by the
discrete-dislocation plasticity. This implies that the in-
teraction of the deformation bands is not strong enough
in comparison to the long- and short-range interac-
Figure 9 Contour plots of the equivalent plastic strain obtained in the tions between discrete dislocations and hence can not
crystal-plasticity analysis of plane-strain tension at three values of th ; by
ax);al strr;in: (a){).OOl,)/(b) 0.0%2, and (c) 0.003. Tully account fpr the hardenln_g _effects opserved W'Fh'n
the discrete-dislocation plasticity analysis. In addition,
conventional crystal plasticity does not account for ad-

are shown in Fig. 9a—c. Distorted finite element meshegjtional hardening which arises from the presence of
are notshownsince, inthis case, localization of the plasyeometrically necessary dislocations.

inthe discrete-dislocation analysis and is more difficult;otation angl@ = 0.010 is shown in Fig. 10a. Localiza-

in Fig. 9a—c, indicate that during plane-strain tensionhands and intersections of these bands are evident. A
plastic flow mainly localizes into a band whose |0ca'comparison of the results shown in Fig. 10a with the
tion coincides with the slip band observed in Fig. 4b.qnes shown in Fig. 6b shows that there is a crystal-
As the imposed axial strain increases, localization ofggraphic relationship between the deformation bands
the plastic flow becomes more pronounced. predicted by the crystal-plasticity analysis and the slip
As discussed earlier, the initial slip resistance of eaclhands obtained in the discrete-dislocation analysis.
elementis assumed to be proportional to the value of thgnys one of the salient features of plastic deformation
dislocation-source strengtijc it contains. The initial  at the micron-length scale, the localization of plastic
slip resistances of the elements which do not contaifjow, is predicted in the crystal plasticity analysis of
dislocation sources is set to scale with #ng., which  heam pending.
is one standard deviation higher thag.. The slip- A contour plot of thesy; stress at the rotation an-
resistance/source-strength proportionality constant i§|e 6 =0.010 is shown in Fig. 10b. Since the plastic
determined by fitting the axial-stress vs. axial strainfiow localization if controlled by the elements with a
plane-strain tension curve obtained using the discretgg,y slip resistance and strain hardening is not consid-

dislocation approach, Fig. 4a. The result of the fittingered explicitly, there is a close relationship between the
procedure is also shown in Fig. 4a. It is evident that

the discrete-dislocation based results for plane-strain
tension can be reproduced fairly well by the continuum

crystal-plasticity model, at least in the small strain

range analyzed in the present work. The advantage o
the crystal-plasticity analysis is that it could be com-

pleted in only a fraction (typically 1-2%) of the time |_ £
required for completion of the corresponding discrete-
dislocation analysis. It should be noted, however, that
in our discrete-dislocation analysis a Fortran-based
computer program is interfaced with the commercial
finite element program Abaqus/Standard [10] which
requires linking of the two at each time step. Conse-
quently, more modest reductions in computer time are
to be expected should the discrete-dislocation analysis )

be carried out using a single computer program. _ _ . . -
The variation of the normalized bendin momentﬁgure 10 Contour plots of: (a) the equivalent plastic strain; and
g (b) theo1 stress obtained in the crystal-plasticity analysis of plane-strain

M /Mgt with the _a_ngle of ro_tat_ionf) as pr?dic'[_ed DY  bending at the rotation angle: (&)=0.010. The discrete-dislocation
the crystal plasticity analysis is shown in Fig. 3. A plasticity contour plot corresponding to (b) is shown in Fig. 7b.

e | b BUE-BG

2187



equivalent plastic strain contour plot, Fig. 10a, and thegle relationship) can be fairly well reproduced using
o11 stress contour plot, Fig. 10b. A comparison of thethe continuum formulation;

results shown in Fig. 10b with the ones shown in Fig. 7b (2) Plastic flow localizes into deformation bands
shows that: (a) The maximum stress levels predicted byhich are crystallographically related to the discrete-
the crystal-plasticity analysis, Fig. 10b, are considerdislocation based slip bands. However, the deformation
ably smaller than the corresponding ones predicted bbands are broader and fewer in number than the corre-
the discrete-dislocation plasticity analysis, Fig. 7b. Thissponding slip bands;

observation is consistent with the lower rate of strain (3) Stress and deformation fields predicted by the con-
hardening predicted by the crystal-plasticity approachtinuum model do not generally contain many details of
Fig. 3. Generation of dislocation pile-ups which actthe corresponding discrete-dislocation fields. This dis-
as load springs is the principle cause of high stressesrepancy could be critical when one considers issues
obtained within the discrete-dislocation analysis. Assuch as the onset of damage in the material during de-
stated earlier, the interactions of deformation band$ormation which is governed by the local maxima in
within the crystal-plasticity approach are too weak tothe stress and/or strain fields.

give rise to a significant increase in the bending mo-

ment in the plastic region; and (b) In addition to failing

to predictthe correct maximum stress levels, the crystal_l_h " dhere is based K q
plasticity analysis is not able to reveal many details in e material presented here Is based on work supporte
y the National Science Foundation, Grant Numbers

thestressfleldsobservedW|th|nthed|screte-d|slocat|oﬁ)MR_9906268 and CMS-9531930 and by the U.S.

analysis, Fig. 7b. This limitation of the crystal-plasticity

approach could be critical if the present analysis is thm.y Srznt(lj\lumber DAAHO4-96-1-0197i;’heguthorsl

be extended to include initiation of failure which may '€ N¢€ ted to Drs. Bruce A. MacDonald and Danie
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